CONTÁCTENOS - 91 575 78 24
RSS
Estás en www.librosingenieria.com
Si no encuentra un libro lo buscamos por Ud.
91 575 78 24

CESTA DE LA COMPRA

Tiene 0 productos en su cesta Importe total: 0
> > Design of Steel Structures to Eurocodes

Por favor introduzca la cantidad deseada y pulse sobre el carrito.

105 €/Ud.
Cantidad:

Design of Steel Structures to Eurocodes

Autor:

Descripción

This textbook describes the rules for the design of steel and composite building structures according to Eurocodes, covering the structure as a whole, as well as the design of individual structural components and connections. It addresses the following topics: the basis of design in the Eurocodes framework; the loads applied to building structures; the load combinations for the various limit states of design and the main steel properties and steel fabrication methods;


Características

  • ISBN: 978-3-319-95473-8
  • Páginas: 595
  • Tamaño: 17x24
  • Edición:
  • Idioma: Inglés
  • Año: 2019

Disponibilidad: 3 a 7 Días

Contenido Design of Steel Structures to Eurocodes

Features the most up-to-date edition of Eurocodes (mainly Eurocode 3), which is widely used worldwide
   
Provides a solid theoretical foundation for steel and composite single-storey and multi-storey structures
    
Covers a broad spectrum of subjects such as materials, actions, strength, stability, serviceability, seismic design, etc.
    
Includes numerous illustrative design examples

This textbook describes the rules for the design of steel and composite building structures according to Eurocodes, covering the structure as a whole, as well as the design of individual structural components and connections. It addresses the following topics: the basis of design in the Eurocodes framework; the loads applied to building structures; the load combinations for the various limit states of design and the main steel properties and steel fabrication methods; the models and methods of structural analysis in combination with the structural imperfections and the cross-section classification according to compactness; the cross-section resistances when subjected to axial and shear forces, bending or torsional moments and to combinations of the above; component design and more specifically the design of components sensitive to instability phenomena, such as flexural, torsional and lateral-torsional buckling (a section is devoted to composite beams); the design of connections and joints executed by bolting or welding, including beam to column connections in frame structures; and alternative configurations to be considered during the conceptual design phase for various types of single or multi-storey buildings, and the design of crane supporting beams. In addition, the fabrication and erection procedures, as well as the related quality requirements and the quality control methods are extensively discussed (including the procedures for bolting, welding and surface protection). The book is supplemented by more than fifty numerical examples that explain in detail the appropriate procedures to deal with each particular problem in the design of steel structures in accordance with Eurocodes. The book is an ideal learning resource for students of structural engineering, as well as a valuable reference for practicing engineers who perform designs on basis of Eurocodes.

Contents

1 Basis of Design


1.1 Introduction
1.2 Codes and Specifications
1.3 Actions
   1.3.1 Permanentactions G
   1.3.2 Imposed loads on buildings Q
   1.3.3 Snow loads S
   1.3.4 Wind loads W
   1.3.5 Temperature variations T
   1.3.6 Accidental actions A
   1.3.7 Seismic actions AE
1.4 Limit States and combinations o factions
   1.4.1 General
   1.4.2 Ultimate Limit States (ULS)
   1.4.3 Serviceability Limit States (SLS)
1.5 Properties of steel .
   1.5.1 General
   1.5.2 Mechanical properties of steel
   1.5.3 Micro structure of steel
1.5.4 Making of steel and steel products
1.5.5 Structural steel grades
References


2 Models and methods of analysis

2.1 Introduction
2.2 Models for steel buildings and other types of steel structures
2.3 Models for composite buildings
2.4 Sub-models for structural partsor elements
2.5 Models for local analysis
2.6 Methods analysis–General
   2.6.1 Linear analysis( LA)
   2.6.2 Linear buckling analysis (LBA)
   2.6.3 Materialy non-linear analysis(MNA)
   2.6.4 Geometrically non-linear elastic analysis(GNA)
   2.6.5 Geometrically and materially non-linear analysis(GMNA)
   2.6.6 Geometrically non-linear elastican alysis with imperfections (GNIA)
   2.6.7 Geometrically and materially non-linearan alysis with imperfections (GMNIA)
2.7 Linear analysis (LA)
2.8 Linear buckling analysis (LBA)
2.9 Materially non-linear analysis( MNA)
   2.9.1 Non-linear cross-section behavior
   2.9.2 Collapse loads
   2.9.3 Cross-section classification .
   2.9.4 Cross-section models for deformation controlled analyses
2.10 Geometrically non-linear analysis (GNA)
   2.10.1 Kinematic relations .
   2.10.2 Analytical solutions
   2.10.3 Numerical solutions–Rayleigh/Ritz method
   2.10.4 Magnificati on factorsf or P−Δ and P−δ effects
2.11 Geometrically and materially non-linear analysis (GMNA)
2.12 Non-linear analyses with imperfections(GNIA,GMNIA)
2.13 Imperfections in buildings .
2.14 Global analysis and design for building frames to Eurocode3
References

3 Cross-section design

3.1 General
3.2 Tension
3.3 Compression
3.4 Bending
3.5 Shear force
3.6 Torsion
   3.6.1 General
   3.6.2 Elastic design for torsion
   3.6.3 Plastic design for torsion
3.7 Combination of internal forces and moments for elastic design.
3.8 Combination of internal forces and moments for plastic design
   3.8.1 Combination N −M for rectangular cross-sections
   3.8.2 Combination N −My−Mz for a doubly symmetricalI cross-sections
   3.8.3 Combination N −My−Mz for hollow sections
   3.8.4 Combination N −My−Mz for circular hollow sections
   3.8.5 Combination N −My−Mz for equal leganglesections
   3.8.6 Linear interaction for all types of cross-sections
   3.8.7 Influence of shear forces
References

4 Member design

4.1 General
4.2 Flexural buckling o fcompression members
   4.2.1 Elastic critical (Euler) loads
   4.2.2 Design buckling resistance
   4.2.3 Design bynon-linear analysis
   4.2.4 Torsional and torsional-flexural buckling of compression members
4.3 Lateral torsional buckling (LTB) of bending members
   4.3.1 Elastic critical moments
   4.3.2 LTB design moments
   4.3.3 Design by the general method
   4.3.4 Design by non-linear analysis
4.4 Members to compression and bending
   4.4.1 General
   4.4.2 Magnification factors
   4.4.3 Buckling of members under compression and bending
   4.4.4 Member design to Eurocode3
4.5 Plate girders
   4.5.1 Resistance to bending moments
   4.5.2 Resistance to shea
   4.5.3 Interaction of bending and shear
4.6 Built-up compression members
   4.6.1 Critical buckling load
   4.6.2 Internal forces and moments and design
4.7 Composite beams
   4.7.1 Resistance to bending moments
   4.7.2 Resistance to vertical shear
   4.7.3 Shear connection
References

5 Design of connections and joints

5.1 Introduction
5.2 Bolted connections
   5.2.1 Bolts and accessories
   5.2.2 Hole clearances and bolting assemblies
   5.2.3 Installation of bolts
   5.2.4 Categories and resistance of bolted connections
5.3 Connections withpins
5.4 Welded connections
   5.4.1 Welding methods
   5.4.2 Types and geometric properties of welds
   5.4.3 Design of welds
   5.4.4 Residua lstresses
   5.4.5 Welding deformations
5.5 Design of joints
   5.5.1 Longlap joints
   5.5.2 Splices of members
    5.5.3 Groups of asteners
    5.5.4 T-stubs
    5.5.5 Beam-to-column joints
    5.5.6 Hollow section welded joints
References .

6 Single store y buildings

6.1 Typical elements of a single store y building.
6.2 Roofs resting on concrete columns
   6.2.1 Introduction
   6.2.2 The geometry of the trusses
   6.2.3 Cross-sections of bars–Shaping of nodes
   6.2.4 Trusses with hollow sections
   6.2.5 Transverse connection between trusses
   6.2.6 Buckling length of truss bars
   6.2.7 Supports on the concrete beams
6.3 Steel framed structures
   6.3.1 Introduction
   6.3.2 Typical portal frames with members from I and H cross-sections
   6.3.3 Frames with trusses as horizontal members
   6.3.4 Single storey buildings with operating cranes
   6.3.5 Buildings of complex geometry orf o rspecial purposes
   6.3.6 Anchorage .
6.4 Bracing systems of the building
   6.4.1 Introduction
   6.4.2 Horizontal  lorwind) bracing systems
   6.4.3 Verticalbracingsystems
   6.4.4 The seismic behavior of the vertical bracings
   6.4.5 Stressed skin design
6.5 Secondary structural elements
   6.5.1 The purlins
   6.5.2 The side rails
   6.5.3 Gable wall columns
6.6 Cranes up porting beams
   6.6.1 Introduction .
   6.6.2 Actions induced by crane bridges on the run way beams
   6.6.3 Ultimate limit states
   6.6.4 Serviceability limit states
   6.6.5 Fatigue
   6.6.6 Specific verifications
   6.6.7 Conceptual design.Construction al details
   6.6.8 Underslung cranes
References

7 Multi store y buildings

7.1 Introduction
7.2 Main structuralelements o fa steel multistore y building
   7.2.1 General
   7.2.2 Columns
   7.2.3 Main beams
   7.2.4 Secondary beams
   7.2.5 Concrete slabs
7.3 Beam to column joints
   7.3.1 Introduction
   7.3.2 Simple connections .
   7.3.3 Rigid connections
   7.3.4 Semi-rigid connections
7.4 Systems ensuring the lateral stability of the building
   7.4.1 Introduction
   7.4.2 Moment resisting frames
   7.4.3 Concentric bracings
   7.4.4 Eccentric bracings
   7.4.5 Shear walls
7.5 Seismic designto Eurocode8
   7.5.1 General .
   7.5.2 Moment resisting frames
   7.5.3 Concentric bracings.
   7.5.4 Eccentric bracings
References .

8 Fabrication and erection

8.1 Introduction .Execution classes
8.2 Cutting,holing and shaping
   8.2.1 Introduction
   8.2.2 Cutting
   8.2.3 Holing
   8.2.4 Shaping
8.3 Welding
   8.3.1 Introduction
   8.3.2 Preparation and execution
   8.3.3 Welds imperfections
   8.3.4 Non-destructive testing
   8.3.5 Inspection
8.4 Bolting
   8.4.1 Bolt assemblies
   8.4.2 Tightening of pre loaded bolts
   8.4.3 Specific fasteners
   8.4.4 Inspection .
8.5 Corrosion protection
   8.5.1 Introduction
   8.5.2 Types of environments
   8.5.3 Surface preparation
   8.5.4 Paint systems
   8.5.5 Design considerations
   8.5.6 Execution and checking of the painting
   8.5.7 Hot dip galvanizing
   8.5.8 Intumescent coatings
8.6 Erection
   8.6.1 Introduction
   8.6.2 Erection method statement
8.6.3 Marking,hand lingand storage
8.6.4 Anchor bolts and grouting
8.6.5 Erection procedure
8.6.6 Erection tolerances.Survey
8.7 Constructional imperfections .
8.8 Quality control
8.8.1 Introduction
8.8.2 Constituent products
8.8.3 Quality procedures
References

9 Design Examples

9.1 Example:Combination of actions
    9.1.1 Loads and imperfections
    9.1.2 Frame analysis
    9.1.3 Combination of actions
9.2 Example:Classificationofan(I)cross-section
   9.2.1 Pure compression
   9.2.2 Pure bending
   9.2.3 Compression and bending
   9.2.4 Conclusive results
9.3 Example:Classification of a box girder cross-section .
   9.3.1 Cross-section area and center of gravity of the cross-section
   9.3.2 Classification for M+ y moments (bending about y-y axis, the upper flange in compression)
   9.3.3 Classificationfor M− y moments (bending about y-y axis, the lower flange in compression)
   9.3.4 Classificationfor Mz moments (bendinga boutz-zaxis) .
   9.3.5 Conclusive results
9.4 Example:Bending of a simply supported beam with rolled cross-section .
   9.4.1 Design actions EN1990
   9.4.2 Cross-section selection based on the bending  capacity
   9.4.3 Check of shear strength .
   9.4.4 Check for service aility limit state
   9.4.5 Alternative solutions
9.5 Example:Bending of a welded plate girder–Influence of shear force
   9.5.1 Internal moments and forces .
   9.5.2 Consecutive stages of the cross-section plastification
   9.5.3 Check of the cross-section at support
   9.5.4 Check o fthe cross-section capacity in the span (position of maximum bending moment)
9.6 Example:Design resistance to bending of a thin walled plate girder
   9.6.1 Cross-section classification
   9.6.2 Effective width of the flange
   9.6.3 Stress distribution and effective area o fthe web
   9.6.4 Geometricalpropertiesoftheeffectivecross-section
   9.6.5 Design resistance for bending
9.7 Example:Design of a beam with alternative methods
   9.7.1 Elastic analysis
   9.7.2 Elastic analysis withre distribution of moments
   9.7.3 Plastic analysis
   9.7.4 Verification of shear force .
9.8 Example:Cross-section under simultaneous bending,shear force and axial force
   9.8.1 Determination of the internal forces and moments
   9.8.2 Reduction factor ρ due to the presence of shear force
   9.8.3 Reduced design resistance moment dueto shear force
   9.8.4 Reduced design resistance moment dueto tension force
   9.8.5 Verification of the cross-section
9.9 Example:Beamunderbiaxialbendingandaxialtensionforce
   9.9.1 Influence of the axialloadon theplasticmoments
   9.9.2 Reduced plastic moments
   9.9.3 Design bending moments
   9.9.4 Verification of cross-section capacity
   9.9.5 Verification of lateral-torsional buckling
9.10 Example:Lateral-torsional buckling of a plate girder with doubly symmetrical cross-section
   9.10.1 Cross-section classification
   9.10.2 Cross-section verification the bending moment
   9.10.3 Verification to shear force
   9.10.4 Verification to bending and shear.
   9.10.5 Lateral torsional buckling verification
9.11 Example:Lateral-torsiona lbuckling of a plate girde rwith a simply symmetric cross-section .
   9.11.1 Cross-section classification .
   9.11.2 Design moment .
   9.11.3 Elastic critical momentt for lateral-torsional buckling .
   9.11.4 Design resistance moment for lateral-torsiona lbuckling  and verification of cross-section
9.12 Example:Lateral-torsional buckling of a plate girder with and intermediate lateral restraint
   9.12.1 Design moment
   9.12.2 Point of application of vertical loads
   9.12.3 Elastic critical momentf for lateral torsional buckling
   9.12.4 Verification of capacity
 9.13 Example:Purlinwithoutlateralrestraint   
9.13.1 Structural analysis
9.13.2 Verification for lateral torsional buckling
9.13.3 Check of cross-sectionB
9.14 Example:Purlinlaterallyrestrained
9.14.1 Structural analysis
9.14.2 Verification of span AB to latera ltorsional buckling
9.14.3 Check of cross-sectionB
9.15 Example:Columnunderaxialcompressiveload
9.15.1 Cross-sectionclassification
9.15.2 Verification
9.16 Example:Columnunderaxialcompressiveload with intermediatelateralsupports
9.16.1 Cross-sectionclassification
9.16.2 Verification
9.17 Example:Bucklinglengthofcolumnsinasinglestoreyframe
9.17.1 Bucklinglengthsintheplaneoftheframe .
9.17.2 Bucklinglengthsoutoftheplaneoftheframe
9.18 Example:Bucklingofacolumnofamulti-storeybuilding
9.18.1 Designaxialcompressiveload
9.18.2 Cross-sectionclassification
9.18.3 Non-swayframe(Fig.9.28a)
9.18.4 Swayframe(Fig.9.28b)
9.19 Example:Laterallyrestrainedbeamundercompressionandbending
9.19.1 Cross-sectionclassification
9.19.2 Cross-sectionverification
9.19.3 Memberverification .
9.20 Example:Flexuralandlateraltorsionalbucklingofacolumn .
9.20.1 Geometricalpropertiesofthecross-section . .
9.20.2 Cross-sectionclassification onalbuckling . . . .
9.20.4 Checkoftheresistanceofsectionsateachendofthecolumn
9.21 Example:Beamundercompressionandbending,with intermediate lateralrestraints
9.21.1 General
9.21.2 Designresistancetoaxialcompressiveforce
9.21.3 CalculationofreductionfactorxLT for lateraltorsional buckling
9.21.4 Resistancetobendingofthecross-section .
9.21.5 Calculationofinteractionfactors kyy,kzy .
9.21.6 Verificationof the member
9.21.7 Verification in shear
9.22 Example:Column with class 4 cross-section .
9.22.1 Cross-sectionclassification(foruniformcompression)
9.22.2 Effectivecross-section
9.22.3 Cross-sectionverification
9.23 Example:Webofaplategirderundertransverseconcentratedload
9.23.1 Resistancetotransverseconcentratedforce
9.23.2 Interactionbetweentransverseforce,bendingmoment and axial force
9.23.3 Flangeinducedbuckling
9.24 Example:Lacedbuilt-upcolumn
9.24.1 Bucklingofbuilt-upcolumnsabouty-yaxis(outofthe frame’splane)
9.24.2 Bucklingofbuilt-upcolumnsaboutz-zaxis
9.24.3 Verificationofthelacings
9.25 Example:Built-upcolumnunderaxialforceandbendingmoment
9.25.1 Internalforcesandmoments .
9.25.2 Maximumaxialforceattheunfavorablechord .
9.25.3 Bucklingverificationofeachchord
9.25.4 Verificationofthediagonallacings
9.26 Example:Built-upcolumnwithbattens
9.26.1 Overallbucklingabouty-yaxis .
9.26.2 Verificationofbattens
9.27 Example:Closelyspacedbuilt-upmembersundercompression
9.27.1 Arrangementofanglesback-to-back
9.27.2 Arrangementofstar-battenedanglesasinFig.9.38b .
9.28 Example:Jointandbars’verificationinatrusswithcircular hollowsections(CHS)
9.28.1 Verificationofbars
9.28.2 Verificationofjoint2
9.29 Example:Weldedjointofatrussconsistingofbarswithsquare hollowsections(SHS)
9.29.1 Verificationofbars .
9.29.2 Verificationofjoint .
9.30 Example:Bracingsystemofaroof .
9.30.1 Horizontaldesignforce.
9.30.2 In-plane deflection of the bracing system δq .
9.31 Example:Verticalbracingsysteminsinglestoreybuildings
9.31.1 Methodofanalysisofthestructure
9.31.2 Imperfections
9.31.3 Verificationofdiagonals .
9.31.4 Verificationofcolumns
9.32 Example:Non-swaymomentresistingframe
9.32.1 Selectionofmethodofframeanalysis
XVIII Contents
9.32.2 Imperfections .
9.32.3 Frameanalysis .
9.32.4 Verificationofcolumns
9.32.5 VerificationofbeamBD
9.33 Example:Swaymomentresistingframe
9.33.1 Selectionofmethodfortheframeanalysis
9.33.2 Geometricimperfections
9.33.3 2nd order analysisandcross-section verification
9.33.4 2nd order analysisandmembers design
9.33.5 1st order analysisandmemberdesign
9.34 Example:Boltedconnectionsintension members .
9.34.1 M22boltsofclass4.6
9.34.2 Preloadedbolts
9.35 Example:Tension member splice
9.35.1 Tie-beamintension
9.35.2 Distributionofthedesigntensionforcebetweenthe flanges and the web
9.35.3 Flangeplatesintension
9.35.4 Verificationofflanges’bolts
9.35.5 Web plates
9.35.6 Verification of theweb bolts
9.35.7 Spacings(minimumandmaximum)and distances(end and edge)of bolts
9.36 Example:Anglesconnectedthroughoneleg
9.36.1 Designtensionresistanceofthecross-sectio
9.36.2 Reduceddesignultimateresistanceduetotheeccentric connection
9.36.3 Design resistance
9.37 Example:Boltedconnectionundertension and shear
9.37.1 Designforceinthetension member
9.37.2 Design tension resistance perbolt
9.37.3 Designshearresistanceperbolt(theshearplanepasses
through theunthreadedportionofthebolt)
9.37.4 Combined shearandtension .
9.37.5 Designbearingresistance
9.37.6 Punchingshearresistanceoftheconnectedplates
9.38 Example:Connectionusingpreloadedboltsundershearandtension
9.38.1 ConnectioncategoryCwithM24bolts(slip-resistantat the ultimate limit state)
9.38.2 ConnectioncategoryBwithM20bolts(slip-resistantat the serviceabilitylimitstate)
9.39 Example:Boltedconnectionwithamomentactinginitsplane .
9.39.1 Actions
9.39.2 Class5.6bolts
9.39.3 Class10.9bolts
9.40 Example:Blocksheartearing
9.40.1 Designshearresistanceofthecross-section .
9.40.2 Designblocktearingresistanceattheleftendo fthe  beam
9.40.3 Designblocktearingresistanceattherightendofthe beam
9.41.1 Distancesandspacingofbolts .
9.41.2 Designshearforcesofbolts
9.41.3 Designresistanceofboltsandverification
9.41.4 Checkofanglesatsectiona-a(Fig.9.59b)
9.41.5 Designforblocktearingofthesecondarybeam .
9.42 Example:Pin connection .
9.42.1 Designinternalforcesandmomentsofthepin
9.42.2 Geometricalcharacteristicsofpinendedplates (Fig.9.61c) .
9.42.3 Verificationofcapacityofthepinattheultimatelimitstate
9.42.4 Verificationofcapacityofthepinattheserviceability limit state
9.43 Example:Beam-spliceconnection
9.43.1 Beamcross-sectioncheck.
9.43.2 CheckofM20boltsofflanges
9.43.3 Filletweldswith6mmthicknessofflangeplates
9.43.4 M16boltsofweb
9.43.5 Filletweldswith4mmthicknessofwebplates
9.43.6 Bottomflange plate under tension
9.44 Example:Weldedconnectionoftwoangleswithagussetplate
9.44.1 Resistance of the angles
9.44.2 Resistanceofthefilletweld
9.44.3 Resistanceofthegussetplate
9.45 Example:Weldedconnectionwithanin-planemoment
9.45.1 Geometricalpropertiesoftheweld
9.45.2 Actionsrefertothecenterofgravityoftheweld
9.45.3 Calculation of stresses
9.45.4 Check of stresses
9.45.5 Alternativeapproximatemethodtocheckthewelds
9.46 Example:Weldedbracketconnection(shortcantilever)
9.46.1 Actionsatthebracketsupport
9.46.2 Effectivewidthoftheweldtothebracketflange
9.46.3 Geometricalpropertiesofcantilevercross-sectionatthe contact surface with the column’sflange
9.46.4 Cross-sectionclassification(atsupport) .
9.46.5 Verificationofresistanceofthesectionatsupport
9.46.6 Checkoftheweldbetweencolumnflangeandofthebracketweb
9.46.7 Brackettocolumnwelding
9.46.8 Alternativecheckoftheweld
9.47 Example:Weldedshortcantileverundercombinedstresses
9.47.1 Geometricalpropertiesofthefilletweld .
9.47.2 Actionsatthecenterofgravityoftheweld
9.47.3 Calculationofstresses .
9.47.4 Checkoftheweld
9.47.5 Alternativecheckoftheweld,usingdirectionalmethod .
9.48 Example:Intermittentfilletweldsinaplategirder
9.48.1 Calculationofactions
9.48.2 Resistanceofthecross-sectionshowninFig.9.72b .
9.48.3 Checkofcapacityoftheintermittentwelds
9.48.4 Determinationofthewidthboftheadditionalplate
9.48.5 Checkofcapacityofthelength lw2 of theintermittent welds .
9.49 Example:Beamtocolumnboltedconnection .
9.49.1 Resistanceofthemaincomponents.
9.49.2 Columnflangeinbending .
9.49.3 Endplateinbending
9.49.4 Beamwebundertension,2nd bolt-row
9.49.5 Columnwebundertension,2nd bolt-row
9.49.6 Columnwebundertension,1st and 2nd bolt-row
9.49.7 Bolts’forces
9.49.8 Bendingmomentresistanceoftheconnection
9.49.9 Designshearoftheconnection
9.49.10 Rotationalstiffnessofthejointfor Mj,sd = 100 kNm .
9.50 Example:Beamtocolumnweldedconnection
9.50.1 Columnwebinshear .
9.50.2 Columnwebincompression .
9.50.3 Flangeandwebofthebeamincompression
9.50.4 Columnflangeinbending
9.50.5 Columnwebintension
9.50.6 Maximumvalueofthecoupleofforcesatthelevelsof beam flangesandbeamverification
9.50.7 Checkofwelds
9.50.8 Rotationalstiffnessofthejointfor Mj,Ed = 38 kNm
9.51 Example:Steelcolumnbaseunderaxialload
9.51.1 Dimensionsofeffectivefoundation
9.51.2 Design resistance of concrete
9.51.3 Effectivebaseplatearea
9.51.4 Verificationofcapacityincompression
9.52 Example:Steelcolumnbaseunderaxialloadandbendingmoment aboutthecolumn’smajorprincipalaxis
9.52.1 Effectivelength
9.52.2 Resistanceofbaseplateinthesideoftensionedanchorbolts
9.52.3 Effective area
9.52.4 Resistance o fthe jointin bending
I9.52.5 Designresistanceincompressionandbendingofthelowercolumncross-section

Pago seguro | Mensajerías

Copyright © Despegando S.L. 2024 | | info@librosingenieria.com