CONTÁCTENOS - 91 575 78 24
Estás en
Si no encuentra un libro lo buscamos por Ud.
91 575 78 24


Tiene 0 productos en su cesta Importe total: 0

Por favor introduzca la cantidad deseada y pulse sobre el carrito.

180 €/Ud.

Soil Liquefaction A Critical State Approach



A Rigorous and Definitive Guide to Soil Liquefaction Soil liquefaction occurs when soil loses much of its strength or stiffness for a time—usually a few minutes or less—and which may then cause structural failure, financial loss, and even death. It can occur during earthquakes, from static loading, or even from traffic-induced vibration. It occurs worldwide and affects soils ranging from gravels to silts.


  • ISBN: 978-1-48-221368-3
  • Páginas: 690
  • Tamaño: 17x24
  • Edición:
  • Idioma: Inglés
  • Año: 2015

Disponibilidad: 3 a 7 Días

Contenido Soil Liquefaction A Critical State Approach

A Rigorous and Definitive Guide to Soil Liquefaction

Soil liquefaction occurs when soil loses much of its strength or stiffness for a time—usually a few minutes or less—and which may then cause structural failure, financial loss, and even death. It can occur during earthquakes, from static loading, or even from traffic-induced vibration. It occurs worldwide and affects soils ranging from gravels to silts.

From Basic Physical Principles to Engineering Practice

Soil Liquefaction has become widely cited. It is built on the principle that liquefaction can, and must, be understood from mechanics. This second edition is developed from this premise in three respects: with the inclusion of silts and sandy silts commonly encountered as mine tailings, by an extensive treatment of cyclic mobility and the cyclic simple shear test, and through coverage from the "element" scale seen in laboratory testing to the evaluation of "boundary value problems" of civil and mining engineering. As a mechanics-based approach is necessarily numerical, detailed derivations are provided for downloadable open-code software (in both Excel/VBA and C++) including code verifications and validations. The "how-to-use" aspects have been expanded as a result of many conversations with other engineers, and these now cover the derivation of soil properties from laboratory testing through to assessing the in situ state by processing the results of cone penetration testing. Downloadable software is supplied on

    Includes derivations in detail so that the origin of the equations is apparent
    Provides samples of source code so that the reader can see how complex-looking differentials actually have pretty simple form
    Offers a computable constitutive model in accordance with established plasticity theory
    Contains case histories of liquefaction
    Makes available downloads and source data on the CRC Press website

Soil Liquefaction: A Critical State Approach, Second Edition continues to cater to a wide range of readers, from graduate students through to engineering practice.

Table Contents

1 Introduction

1.1 What is this book about?
1.2 A critical state approach
1.3 Experience of liquefaction
      1.3.1 Static liquefaction of sands: (1) Fort Peck Dam
      1.3.2 Static liquefaction of sands: (2) Nerlerk berm
      1.3.3 Liquefaction in Niigata earthquake
      1.3.4 Post-earthquake liquefaction: Lower San Fernando Dam
      1.3.5 Mine waste liquefaction: (1) Aberfan
      1.3.6 Mine waste liquefaction: (2) Merriespruit tailings dam failure
      1.3.7 High cycle loading
      1.3.8 Liquefaction induced by machine vibrations
      1.3.9 Instrumented liquefaction at Wildlife Site
      1.3.10 Summary of lessons from liquefaction experiences
1.4 Outline of the development of ideas

2 Dilatancy and the state parameter

2.1 Framework for soil behaviour
       2.1.1 Dilatancy
       2.1.2 Critical state
       2.1.3 Stress–dilatancy
2.2 State parameter approach
       2.2.1 Definition
       2.2.2 Theoretical basis
       2.2.3 Using initial versus current void ratio
       2.2.4 Experimental evidence for approach
       2.2.5 Normalized and other variants of the state parameter
       2.2.6 State–dilatancy (soil property χ)
       2.2.7 Influence of fabric
       2.2.8 Influence of OCR
       2.2.9 Effect of sample size
2.3 Evaluating soil behaviour with the state parameter
2.4 Determining the critical state
       2.4.1 Triaxial testing procedure
       2.4.2 Determining CSL from test results (soil properties Γ, λ)
       2.4.3 Critical friction ratio (soil property Mtc)
2.5 Uniqueness of the CSL
2.6 Soil properties
       2.6.1 Summary of properties for a mechanics-based framework
       2.6.2 Example properties of several sands and silts
       2.6.3 Soil property measurement
2.7 Plane strain tests for soil behaviour
       2.7.1 Simple shear
       2.7.2 Imperial College and Nanyang Technical University plane strain test
2.8 General soil behaviour from triaxial properties
       2.8.1 Critical friction ratio in 3D stress states: M(θ)
       2.8.2 Operational friction ratio in stress–dilatancy: Mi
       2.8.3 General state–dilatancy

3 Constitutive modelling for liquefaction

3.1 Introduction
       3.1.1 Why model?
       3.1.2 Why critical state theory?
       3.1.3 Key simplifications and idealization
       3.1.4 Overview of this chapter
3.2 Historical background
3.3 Representing the critical state
       3.3.1 Existence and definition of the CSL
       3.3.2 Critical state in void ratio space
       3.3.3 Critical stress ratio M(θ)
3.4 Cambridge view
       3.4.1 Idealized dissipation of plastic work
       3.4.2 Original Cam Clay and Granta Gravel
       3.4.3 Numerical integration and the consistency condition
3.5 State parameter view
       3.5.1 Trouble with Cam Clay
       3.5.2 Infinity of NCL
       3.5.3 State as an initial index versus state as an internal variable
3.6 NorSand
       3.6.1 Triaxial compression version
       3.6.2 Elasticity in NorSand
       3.6.3 NorSand summary and parameters
       3.6.4 Numerical integration of NorSand
3.7 Comparison of NorSand to experimental data
       3.7.1 Determination of parameters from drained triaxial tests
       3.7.2 Influence of NorSand properties on modelled soil behaviour 133
3.8 Commentary on NorSand
       3.8.1 Yield surface shape
       3.8.2 Effect of elastic volumetric strain on ψ
       3.8.3 Volumetric versus shear hardening and isotropic compression
       3.8.4 Limit on hardening modulus
       3.8.5 Plane strain and other non-triaxial compression loadings

4 Determining state parameter in-situ

4.1 Introduction
4.2 SPT versus CPT
4.3 Inverse problem: A simple framework
4.4 Calibration chambers
       4.4.1 Description
       4.4.2 Test programs and available data
       4.4.3 Calibration chamber size effects
4.5 Stress normalization
      4.5.1 Effect of vertical and horizontal stresses
      4.5.2 Reference condition approach
      4.5.3 Linear stress normalization
4.6 Determining ψ from CPT
      4.6.1 Original method
      4.6.2 Stress-level bias
      4.6.3 Simulations with NorSand
      4.6.4 Complete framework
4.7 Moving from calibration chambers to real sands
      4.7.1 Effect of material variability and fines content
      4.7.2 Soil behaviour−type index from the CPT
      4.7.3 Theoretical approach using cavity expansion
      4.7.4 Screening-level assessment
      4.7.5 Effect of interbedded strata
      4.7.6 CPT inversion software
4.8 Elasticity in-situ
4.9 Horizontal geostatic stress
      4.9.1 Geostatic stress ratio, Ko
      4.9.2 Measurement with SBP
      4.9.3 Measurement with horizontal stress CPT
      4.9.4 Importance of measuring Ko
4.10 Alternative in-situ tests to the CPT
      4.10.1 Self-bored pressuremeter
      4.10.2 Flat plate dilatometer
      4.10.3 Using the SPT database
4.11 Commentary on state determination using the CPT

5 Soil variability and characteristic states

5.1 Introduction
5.2 Effect of loose pockets on performance
5.3 Effect of variability of in-situ state on cyclic performance
       5.3.1 Distribution of CPT resistance in Tarsiut P-45 fill
       5.3.2 Liquefaction analysis under earthquake loading
5.4 Nerlerk case history
5.5 Assessing the characteristic state of sands
       5.5.1 Characteristic state for liquefaction
       5.5.2 Characteristic strengths for foundation design
5.6 Summary

6 Static liquefaction and post-liquefaction strength

6.1 Introduction
6.2 Data from laboratory experiments
       6.2.1 Static liquefaction in triaxial compression tests
       6.2.2 Triaxial extension
       6.2.3 Simple shear
       6.2.4 Plane strain compression
6.3 Trends in laboratory data for su and sr
6.4 Nature of static liquefaction
6.5 Undrained NorSand
       6.5.1 Representing the undrained condition
       6.5.2 Simulation of undrained behaviour
       6.5.3 How NorSand models liquefaction
       6.5.4 Effect of soil properties and state on liquefaction
6.6 Understanding from NorSand
       6.6.1 Uniqueness of critical state
       6.6.2 Instability locus
       6.6.3 Effect of silt (fines) content on liquefaction
       6.6.4 Liquefaction in triaxial extension
       6.6.5 Liquefaction with constant deviator and reducing mean stress
       6.6.6 Pseudo–steady state
6.7 Plane strain versus triaxial conditions
6.8 Steady-state approach to liquefaction
       6.8.1 Basic premise of steady-state school
       6.8.2 Validation of the steady-state approach
       6.8.3 Deficiencies of the steady-state approach
6.9 Trends from full-scale experience
       6.9.1 Background to the empirical approach
       6.9.2 Strength (stability) assessments
       6.9.3 Summary of full-scale experience
       6.9.4 Residual (post-liquefaction) strength
        Current best practice in the United States
       6.9.5 State parameter approach
6.10 Lower San Fernando Dam revisited
6.11 How dense is dense enough?
        6.11.1 Basis for judgement from laboratory data
        6.11.2 CPT charts and case history trends
        6.11.3 Project-specific studies
6.12 Post-liquefaction residual strength
        6.12.1 Residual strengths guided by case histories and penetration resistance
        6.12.2 Residual strengths by numerics
6.13 Liquefaction assessment for silts
6.14 Summary

7 Cyclic stress–induced liquefaction (cyclic mobility and softening)

7.1 Introduction
       7.1.1 Cyclic mobility
       7.1.2 Alternative forms of cyclic loading
7.2 Experimental data
       7.2.1 Laboratory cyclic test methods
       7.2.2 Trends in cyclic triaxial test data on sands
       7.2.3 Cyclic behaviour of silts
       7.2.4 Cyclic rotation of principal stress
7.3 Trends in cyclic simple shear behaviour
       7.3.1 Fraser River sand
       7.3.2 Triaxial testing programme
        Critical state parameters
        Plasticity parameters
        Validation of FRS properties
       7.3.3 Cyclic simple shear tests on FRS
        Testing programme
        Loading conditions (static bias)
        Sand response for LSRo < ISR/2
        Sand response for LSRo ≈ ISR
       7.3.4 Nature of liquefaction in simple shear
7.4 Berkeley School approach
       7.4.1 Background
       7.4.2 Liquefaction assessment chart
       7.4.3 CRR adjustment factors
       7.4.4 Deficiencies with the Berkeley School method
7.5 State parameter view of the Berkeley approach
       7.5.1 State parameter version of the CPT charts
       7.5.2 Nature of Kσ
       7.5.3 Nature of Kα
       7.5.4 Influence of silt content
7.6 Theoretical framework for cyclic loading
       7.6.1 Alternative modelling approaches for cyclic loading
       7.6.2 NorSand with cyclic loading and principal stress rotation
       7.6.3 Modelling simple shear with NorSand
7.7 Dealing with soil fabric in-situ
7.8 Summary

8 Finite element modelling of soil liquefaction Dawn Shuttle

8.1 Introduction
8.2 Open-Source finite element software
       8.2.1 Adopted software
       8.2.2 Prior verification for slope stability analysis
       8.2.3 NorSand implementation
       8.2.4 Plotting and visualization
8.3 Software verification
8.4 Slope liquefaction
       8.4.1 Scenarios analyzed
       8.4.2 Displacement controlled loading
       8.4.3 Surface loading with rough rigid footing
       8.4.4 Crest loading with deep weak zone
       8.4.5 Movement at depth
8.5 Commentary

9 Practical implementation of critical state approach

9.1 Overview
9.2 Scope of field investigations and laboratory testing
9.3 Deriving soil properties from laboratory tests
       9.3.1 Selecting a representative sample
       9.3.2 Minimum test program
       9.3.3 Practical test program
       9.3.4 Data handling
        Data file structure
        Data processing
       9.3.5 Evaluation of soil properties
       Properties worksheet
       Test summary table
       Critical state line (Γ, λ) from the state plot
       Stress–dilatancy plot (Mtc, N)
       State–dilatancy plot (χtc)
      9.3.6 Validation of soil properties
       Check plastic properties by simulation of drained tests
       Confirm elastic properties by simulation of undrained tests
      9.3.7 Document simulation input sets
      9.3.8 Reading this section is not enough
      9.3.9 Reporting soil properties
9.4 Laboratory measurement of cyclic strength
      9.4.1 Need for cyclic testing
      9.4.2 Cyclic strength ratio from simple shear tests
      9.4.3 Representing trends in cyclic strength ratio
      9.4.4 Modelling cyclic simple shear tests
      9.4.5 Reporting CSR trends
9.5 Determining soil state by CPT soundings
      9.5.1 CPT equipment and procedures
       Standards and requirements
       Data recording
       Data structure
       Dissipation tests
       9.5.2 Interpretation of CPT data
       CPT processing software
       Using CPT_plot
       Viewing CPT results
       Reporting CPT data
9.6 Application to typical problems in sands and silts

10 Concluding remarks

10.1 Model uncertainty and soil variability
        10.1.1 Quantifying soil variability
        10.1.2 Analytical methods
10.2 State as a geological principle
10.3 In-situ state determination
10.4 Laboratory strength tests on undisturbed samples
        10.4.1 Undisturbed sampling and testing of sands (Duncan Dam)
        10.4.2 Undisturbed sampling and testing of clay-like soils
        10.4.3 Correcting for sampling disturbance (void ratio matters)
10.5 Soil plasticity and fabric
10.6 Relationship to current practice
10.7 What next?
10.8 Do download!

Appendix A: Stress and strain measures

Appendix B: Laboratory testing to determine the critical state of sands  Ken Been and Roberto Olivera

B.1 Overview
B.2 Equipment
       B.2.1 Computer control
       B.2.2 Platens
       B.2.3 Axial load measurement
       B.2.4 Compaction mould
       B.2.5 Tamper
B.3 Sample preparation
       B.3.1 Moist tamping method
       B.3.2 Wet pluviation
       B.3.3 Slurry deposition
       B.3.4 Dry pluviation
       B.3.5 Recommended sample reconstitution procedure
B.4 Sample saturation
       B.4.1 Carbon dioxide treatment
       B.4.2 Saturation under vacuum
B.5 Void ratio determination
       B.5.1 Volume changes during saturation (ΔVsat)
       B.5.2 Membrane penetration correction
B.6 Data Reduction

Appendix C: NorSand derivations


C.1 Evolution of NorSand
       C.1.1 State–dilatancy (χtc)
       C.1.2 Critical friction ratio (M)
       C.1.3 Volumetric coupling in stress–dilatancy (N)
       C.1.4 Engineering strain
C.2 Yield surface
C.3 Image state parameter
C.4 Hardening limit and internal yielding
C.5 Hardening rule
       C.5.1 Outer yield surface hardening with fixed principal directions
       C.5.2 Additional softening
       C.5.3 Softening of outer yield surface by principal stress rotation
       C.5.4 Softening of inner yield surface
       C.5.5 Constraint on hardening modulus
C.6 Overconsolidation
       C.6.1 Effect of reloading
C.7 Consistency condition
       C.7.1 Consistency case 1: on outer yield surface
       C.7.2 Consistency case 2: on inner cap
C.8 Stress differentials
C.9 Direct numerical integration for element tests
       C.9.1 Undrained triaxial tests
       C.9.2 Drained triaxial compression
       C.9.3 Drained plane strain: Cornforth’s apparatus
       C.9.4 Undrained simple shear tests
       C.9.5 Drained simple shear tests

Appendix D: Numerical implementation

D.1 Principal versus Cartesian
D.2 Viscoplasticity
D.3 NorSandFEM viscoplasticity program
        D.3.1 NorSandFEM conventions
        D.3.2 NorSandFEM freedom numbering
D.4 Viscoplasticity in NorSandFEM
        D.4.1 Viscoplastic yield routine
        D.4.2 Update image mean stress: NorSand hardening
        D.4.3 Standard bullet hardening
        D.4.4 Additional softening term
        D.4.5 Viscoplastic strain increments
D.5 Inputs to NorSandFEM
        D.5.1 Constant stress input file format
        D.5.2 Gravity loading input file format
D.6 Verification and examples
D.7 Download notes for NorSandFEM
D.8 Elastic predictor–plastic corrector
        D.8.1 Plasticity in EP–PC
        D.8.2 Plastic multiplier in EP–PC
        D.8.3 Consistency condition
D.9 Concluding comments

Appendix E: Calibration chamber test data

Appendix F: Some case histories involving liquefaction flow failure

F.1 Nineteenth- and twentieth-century Zeeland coastal slides (the Netherlands)
F.2 1907: Wachusett Dam, North Dyke (Massachusetts)
F.3 1918: Calaveras Dam (California)
F.4 1925: Sheffield Dam (California)
F.5 1938: Fort Peck (Montana)
F.6 1968: Hokkaido Tailings Dam (Japan)
F.7 1978: Mochikoshi Tailings Dams No. 1 and No. 2 (Japan)
F.8 1982/3: Nerlerk (Canada)
F.9 1985: La Marquesa (Chile)
F.10 1985: La Palma (Chile)
F.11 1991: Sullivan Mine Tailings Slide (British Columbia)
F.12 1994: Jamuna (Bangabandhu) Bridge (Bangladesh)

Appendix G: Seismic liquefaction case histories

G.1 Introduction
G.2 Imperial Valley event (1979)
       G.2.1 References
       G.2.2 1979 Imperial Valley, Radio Tower B1 (30)
       G.2.3 1979 Imperial Valley, McKim Ranch A (31)
       G.2.4 1979 Imperial Valley, Kornbloom B (32)
       G.2.5 1979 Imperial Valley, Radio Tower B2 (34)
G.3 Westmorland Event
       G.3.1 References
       G.3.2 1981 Westmoreland, Radio Tower B1 (42)
       G.3.3 1981 Westmoreland, Radio Tower B2 (44)
G.4 1989 Loma Prieta Event
       G.4.1 References
       G.4.2 1989 Loma Prieta, San Francisco-Oakland Bay Bridge site 1 (71)
       G.4.3 1989 Loma Prieta, San Francisco-Oakland Bay Bridge site 2 (72)
       G.4.4 1989 Loma Prieta, Marine Laboratory C4 (78)
       G.4.5 1989 Loma Prieta, Sandholdt Road UC-4 (80)
       G.4.6 1989 Loma Prieta, Moss Landing State Beach UC-14 (81)
       G.4.7 1989 Loma Prieta, Farris Farm Site (87)
       G.4.8 1989 Loma Prieta, Miller Farm CMF8 (88)
       G.4.9 1989 Loma Prieta, Miller Farm CMF10 (89)
       G.4.10 1989 Loma Prieta, Miller Farm CMF5 (90)
       G.4.11 1989 Loma Prieta, Miller Farm CMF3 (91)
       G.4.12 1989 Loma Prieta, Alameda Bay Farm Island (Dike location) (110)
       G.4.13 1989 Loma Prieta, Monterey Bay Aquarium Research Institute 3 RC-6 (111)
       G.4.14 1989 Loma Prieta, Monterey Bay Aquarium Research Institute 3 RC-7 (112)
       G.4.15 1989 Loma Prieta, Sandholdt Road UC-2 (113)
       G.4.16 1989 Loma Prieta, General Fish CPT-6 (114)
       G.4.17 1989 Loma Prieta, Monterey Bay Aquarium Research Institute 4 CPT-1 (115)
       G.4.18 1989 Loma Prieta, Sandholdt Road UC-6 (116) 643
       G.4.19 1989 Loma Prieta, Moss Landing State Beach UC-18 (117)
G.5 1994 Northridge Event
       G.5.1 References
       G.5.2 1994 Northridge, Balboa Boulevard, Unit C (126)
       G.5.3 1994 Northridge, Potrero Canyon, Unit C1 (128)
       G.5.4 1994 Northridge, Wynne Avenue, Unit C1 (129)
       G.5.5 1994 Northridge, Rory Lane (130)

Appendix H: Cam Clay as a special case of NorSand

H.1 Introduction
H.2 Original Cam Clay
H.3 Plasticity View of OCC
H.4 OCC within NorSand



Pago seguro | Mensajerías

Copyright © Despegando S.L. 2024 | |