CONTÁCTENOS - 91 575 78 24
Estás en
Si no encuentra un libro lo buscamos por Ud.
91 575 78 24


Tiene 0 productos en su cesta Importe total: 0

Por favor introduzca la cantidad deseada y pulse sobre el carrito.

131 €/Ud.

In Situ Tests in Geotechnical Engineering



This book deals with in-situ tests that are performed in geotechnics to identify and characterize the soil.


  • ISBN: 978-1-84821-849-9
  • Páginas: 390
  • Tamaño: 17x24
  • Edición:
  • Idioma: Inglés
  • Año: 2015

Disponibilidad: 3 a 7 Días

Contenido In Situ Tests in Geotechnical Engineering

This book deals with in-situ tests that are performed in geotechnics to identify and characterize the soil. These measurements are then used to size the Civil Engineering works
This book is intended for engineers, students and geotechnical researchers. It provides useful information for use and optimal use of in-situ tests to achieve a better book adaptation of civil engineering on the ground

Table of Contents


Symbols and Notations


Chapter 1. Measuring Water Content and Density

1.1. Sample collection method

1.1.1. Measuring water content using the frying pan method
1.1.2. Measuring water content using the oven-dry method
1.1.3. Measuring dry density using a membrane densitometer
1.1.4. Measuring dry density using the excavation method

1.2. Method without sample collection

Chapter 2. Soil and Rock Sampling Methods

2.1. Sampling classes and nomenclature

2.2. Sampling techniques

2.2.1. Manual samples
2.2.2. Core drilling
2.2.3. Semi-destructive drills
2.2.4. Destructive drills

2.3. The procedures

2.3.1. Sample collection methods
2.3.2. The choice of sampling technique
2.3.3. Labeling samples
2.3.4. Transporting the samples
2.3.5. Storage before testing of class 1 and 3 samples
2.3.6. Competence of the providers
2.3.7. Checking: controls
2.3.8. Sampling written record

2.4. The drilling section

2.5. The rock-quality designation (RQD)

Chapter 3. Measuring the Total Pressuring, the Interstitial Pressure and the Groundwater Table Rating

3.1. Measuring the total pressure within the soil

3.1.1. Measurement principles
3.1.2. Mode of action of the sensors
3.1.3. Deformation measuring systems
3.1.4. Soil-sensor interaction
3.1.5. Other measuring errors
3.1.6. Examples of total pressure sensors

3.2. Measuring the interstitial pressure and the level of the water table

3.2.1. Open-tubed piezometer
3.2.2. Closed-tube piezometer

Chapter 4. Measuring Movement, Settling and Force

4.1. Measuring movement

4.1.1. Topography
4.1.2. Measuring distance directly
4.1.3. The inclinometry technique

4.2. Measuring the settlement

4.2.1. Plate settling gauge
4.2.2. Hydraulic settling gauge
4.2.3. Magnetic settling gauge

4.3. Force transducers

Chapter 5. Static Loading Tests

5.1. Plate loading test

5.1.1. Low-pressure loading test
5.1.2. High-pressure loading test

5.2. Static pile-loading test

5.2.1. Test principle
5.2.2. Practical realization of the test
5.2.3. Loading cycles
5.2.4. Pile-test interpretation

5.3. In conclusion: pile-loading tests

Chapter 6. Tests by Flat Dilatometer (DMT)

6.1. Principle of the test

6.2. Modus operandi
6.3. Interpretation

Chapter 7. Penetrometer Test (CPT, CPTU, SPT, DCPT) and Variants

7.1. Static penetrometer (or cone penetrometer test, CPT)

7.1.1. Principle of the test
7.1.2. Measurement methods
7.1.3. Interpretation
7.1.4. Use of the static penetrometer to calculate foundations
7.1.5. Types of static penetrometer

7.2. The piezocone (CPTU)

7.2.1. Principle of the test
7.2.2. Modus operandi
7.2.3. Interpretation
7.2.4. Exploitation of the test

7.3. Standard penetration test (SPT)

7.3.1. Principle of the test
7.3.2. Modus operandi
7.3.3. Interpretation of SPT
7.4. The dynamic penetrometer (DCPT)

7.4.1. Principle of the test
7.4.2. Modus operandi
7.4.3. Interpretation
7.4.4. Use of dynamic penetration in the calculation of the foundation
7.4.5. Comparison between the results of the static and dynamic penetrometers

Chapter 8. Direct Shear Tests In Situ

8.1. Direct shear box test

8.2. The vane test (VST)

8.2.1. Principle of the test
8.2.2. Practical realization of the test
8.2.3. Interpretation: determining the undrained cohesion
8.2.4. Exploitation complement of the vane test

8.3. The Philiponnat phicomètre

8.3.1. Principle of the test
8.3.2. Practical realization of the test
8.3.3. Interpretation
8.3.4. Advantages and disadvantages of the phicometric test

Chapter 9. Pressuremeter Tests (PMT, SBP) and Variants

9.1. Ménard pressuremeter test (PMT)

9.1.1. Principle of the test
9.1.2. Execution of the test
9.1.3. Normalized interpretation of the standard and cyclical tests

9.2. Self-drilling pressuremeter test (SBP)

9.2.1. Principle of the test
9.2.2. Execution of the test
9.2.3. Evaluation of the tests

9.3. The dilatometer

9.3.1. Description
9.3.2. Interpretation of the results

9.4. The “Géomécamètre”

9.4.1. Principle of the test
9.4.2. Modus operandi
9.4.3. Interpretation

9.5. Theoretical interpretation of the pressuremeter test

9.5.1. Cohesive soil: the Baguelin et al. (1972) interpretation
9.5.2. Cohesive soil: Monnet and Chemaa (1995) interpretation

9.5.3. Granular soil: the Monnet and Khlif (1994) and Monnet (2012) interpretations

Chapter 10. Water Tests in Soils

10.1. Punctual water tests

10.1.1. Infiltrometer test
10.1.2. Lefranc permeability test
10.1.3. Permeability test in borehole current section
10.1.4. Lugeon permeability test

10.2. Pumping or transmission tests

10.2.1. Principle of the test
10.2.2. Execution of the test
10.2.3. Interpretation

Chapter 11. Characterization of Sites and Soils by In Situ Tests

11.1. Characterization of sites

11.1.1. Analysis by drilling parameter recording
11.1.2. Cluster analysis

11.2. Characterization of soils

11.2.1. Identification of the soils
11.2.2. Physical and mechanical parameters
11.2.3. Correlations and relations between the characteristics measured in the laboratory
11.2.4. Correlations involving in situ tests
11.2.5. Relations involving in situ tests


Pago seguro | Mensajerías

Copyright © Despegando S.L. 2019 | |