This volume elucidates the design criteria and principles for steel structures under seismic loads according to Eurocode 8-1. Worked Examples illustrate the application of the design rules.
This volume elucidates the design criteria and principles for steel structures under seismic loads according to Eurocode 8-1. Worked Examples illustrate the application of the design rules. Two case studies serve as best-practice samples.
Table of Contents
PART 1. DESIGN CRITERIA AND CODIFICATION
1 Seismic design principles
1.1. Capacity design criteria
1.2. Dissipative structures and typologies of steel structural systems
1.3. State of European seismic codification and new perspectives
1.4. Conceptual design
2 Introduction to EN1998-1: Explanation and commentary
2.1. Seismic action
2.2. General recommendations for seismic resistant structures
2.3. Analysis methods
2.4. Detailed provisions to design steel structures
PART 2. WORKED EXAMPLES
3 Multi-storey building with moment resisting frame
3.1. General data
3.2. Design and safety check under gravity loads
3.3. Design and safety check under seismic actions
4 Multi-storey building with concentric brace frame
4.1. General data
4.2. Design and safety check under gravity loads
4.3. Design and safety check under seismic actions
5 Multi-storey building with eccentric brace frame
5.1. General data
5.2. Design and safety check under gravity loads
5.3. Design and safety check under seismic actions
6 One-storey industrial building
6.1. General data
6.2. Design and safety check under gravity loads
6.3. Design and safety check under seismic actions
PART 3. STUDY CASES
7 The Bucharest Tower Center
7.1. General data
7.2. Conceptual Design
7.3. Design and safety check under seismic actions
7.4. Credits
8 The fire station of Naples
8.1. General data
8.2. Conceptual Design
8.3. Design and safety check under seismic actions
8.4. Credits
REFERENCES